Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Journal of the Chilean Chemical Society ; 67(3):5656-5661, 2022.
Article in English | CAB Abstracts | ID: covidwho-2326837

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in Wuhan, China, in December 2019 and quickly spread across the worldwide. It becomes a global pandemic and risk to the healthcare system of almost every nation around the world. In this study thirty natural compounds of 19 Indian herbal plants were used to analyze their binding with eight proteins associated with COVID -19. Based on the molecular docking as well as ADMET analysis, isovitexin, glycyrrhizin, sitosterol, and piperine were identified as potential herbal medicine candidates. On comparing the binding affinity with Ivermectin, we have found that the inhibition potentials of the Trigonella foenum-graecum (fenugreek), Glycyrrhiza glabra (licorice), Tinospora cordifolia (giloy) and Piper nigrum (black pepper) are very promising with no side-effects.

2.
Industrial Crops and Products ; 200, 2023.
Article in English | Scopus | ID: covidwho-2318946

ABSTRACT

Tinospora cordifolia herbal supplements have recently gained prominence due to their promising immunomodulatory and anti-viral effects against SARS-CoV-2. Mislabelling or diluting Tinospora supplements for profit may harm public health. Thus, validating the label claim of these supplements in markets is critical. This study investigated how high resolution mass spectrometry-based metabolomics and chemometrics can be used to distinguish Tinospora cordifolia from two other closely related species (T. crispa and T. sinensis). The Orthogonal Partial Least Square Discriminant Analysis (OPLS-DA) and PLS-DA based chemometric models predicted the species identity of Tinospora with 94.44% accuracy. These classification models were trained using 54 T. cordifolia, 21 T. crispa, and 21 T. sinensis samples. We identified 7 biomarkers, including corydine, malabarolide, ecdysterone, and reticuline, which discriminated Tinospora cordifolia from the two other species. The label claim of 25 commercial Tinospora samples collected from different parts of India was verified based on the relative abundance of the biomarker compounds, of which 20 were found authentic. The relative abundance of biomarkers significantly varied in the 5 suspicious market samples. This pilot study demonstrates a robust metabolomic approach for authenticating Tinospora species, which can further be used in other herbal matrices for product authentication and securing quality. © 2023 Elsevier B.V.

3.
J Biomol Struct Dyn ; : 1-18, 2022 Apr 25.
Article in English | MEDLINE | ID: covidwho-2313701

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused appalling conditions over the globe, which is currently faced by the entire human population. One of the primary reasons behind the uncontrollable situation is the lack of specific therapeutics. In such conditions, drug repurposing of available drugs (viz. Chloroquine, Lopinavir, etc.) has been proposed, but various clinical and preclinical investigations indicated the toxicity and adverse side effects of these drugs. This study explores the inhibition potency of phytochemicals from Tinospora cordifolia (Giloy) against SARS CoV-2 drugable targets (spike glycoprotein and Mpro proteins) using molecular docking and MD simulation studies. ADMET, virtual screening, MD simulation, postsimulation analysis (RMSD, RMSF, Rg, SASA, PCA, FES) and MM-PBSA calculations were carried out to predict the inhibition efficacy of the phytochemicals against SARS CoV-2 targets. Tinospora compounds showed better binding affinity than the corresponding reference. Their binding affinity ranges from -9.63 to -5.68 kcal/mole with spike protein and -10.27 to -7.25 kcal/mole with main protease. Further 100 ns exhaustive simulation studies and MM-PBSA calculations supported favorable and stable binding of them. This work identifies Nine Tinospora compounds as potential inhibitors. Among those, 7-desacetoxy-6,7-dehydrogedunin was found to inhibit both spike (7NEG) and Mpro (7MGS and 6LU7) proteins, and Columbin was found to inhibit selected spike targets (7NEG and 7NX7). In all the analyses, these compounds performed well and confirms the stable binding. Hence the identified compounds, advocated as potential inhibitors can be taken for further in vitro and in vivo experimental validation to determine their anti-SARS-CoV-2 potential.Communicated by Ramaswamy H. Sarma.

4.
Coronaviruses ; 3(1):65-72, 2022.
Article in English | EMBASE | ID: covidwho-2272316

ABSTRACT

The Coronavirus Disease 2019 (COVID-19), also known as a novel coronavirus (2019-n-CoV), reportedly originated from Wuhan City, Hubei Province, China. Coronavirus Disease 2019 rapidly spread all over the world within a short period. On January 30, 2020, the World Health Organization (WHO) declared it a global epidemic. COVID-19 is a Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) evolves to respiratory, hepatic, gastrointestinal, and neurological complications, and eventually death. SARS-CoV and the Middle East Respiratory Syndrome coron-avirus (MERS-CoV) genome sequences similar identity with 2019-nCoV or Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). However, few amino acid sequences of 2019-nCoV differ from SARS-CoV and MERS-CoV. COVID-19 shares about 90% amino acid sequence simi-larity with SARS-CoV. Effective prevention methods should be taken in order to control this pandemic situation. To date, there are no effective treatments available to treat COVID-19. This review provides information regarding COVID-19 history, epidemiology, pathogenesis and molecular diagnosis. Also, we focus on the development of vaccines in the management of this COVID-19 pandemic and limiting the spread of the virus.Copyright © 2022 Bentham Science Publishers.

5.
Coronaviruses ; 3(6):39-52, 2022.
Article in English | EMBASE | ID: covidwho-2265489

ABSTRACT

Background: The multitargeted computational approach for the design of drugs to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lung infection from herbal sources may lead to compound(s) that is/are safe (derived from natural sources), effective (act on predefined targets) and broad spectrum (active in both, adult and juvenile population). Objective(s): The present work aims at developing a specific and effective treatment for a lung infection in both the adult and juvenile population, caused due to SARS-CoV-2 through a computational approach. Method(s): A systematic virtual screening of 27 phytoconstituents from 11 Indian herbs with antiviral, anti-inflammatory, and immunomodulatory activity was performed. After applying the Lipinski rule of five, 19 compounds that fitted well were subjected to molecular docking studies using Molegro virtual docker 6.0 with two targets viz. SARS-CoV-2 main protease (Mpro) (PDB ID 6LU7) and ACE receptor (PDB ID 6M0J). The best-docked complexes were used to develop a merged feature pharmacophore using Lig-andscout software, to know the structural requirements to develop multitarget inhibitor(s) of SARS-CoV-2. Drug likeliness and ADMET studies were also performed. Result(s): The results revealed that Syringin, a glycoside from Tinospora cordifolia, has a good binding affinity towards both targets as compared to Remdesivir. Furthermore, drug likeliness and ADMET studies established its better bioavailability and low toxicity. Conclusion(s): The pharmacophores developed from protein-ligand complexes provided an important understanding to design multitarget inhibitor(s) of SARS-CoV-2 to treat COVID-19 lung infection in both the adult and juvenile populations. Syringin may be subjected to further wet-lab studies to establish the results obtained through in-silico studies.Copyright © 2022 Bentham Science Publishers.

6.
Biocell ; 47(4):677-695, 2023.
Article in English | EMBASE | ID: covidwho-2254278

ABSTRACT

Indian medicinal plants are referred to as the "nectar of life" owing to their phytochemicals and bioactive complexes that are beneficial in treating diseases. Coronavirus disease 2019 (COVID-19) is a global health issue without any proper medication. The indigenous plants of India can be exploited to control the precise signs of SARS-CoV-2. The Ministry of AYUSH (Ayurveda, Yoga and Naturopathy, Unani, Siddha, and Homeopathy) has advised routine usage of medicinal plants for COVID-19. Medicinal plants like Zingiber officinalis, Azadirachta indica, Ocimum sanctum, Nigella sativa, Withania somnifera, Curcuma longa, Piper nigrum, Allium sativum, Tinospora cordifolia, etc. have immunity-boosting, antiviral, antibacterial, antioxidant and anti-inflammatory actions that can suppress and treat symptoms of COVID-19. In vitro, in vivo as well as in silico validation, these phytochemicals can help us to manage and treat COVID-19 disease. This integration of traditional knowledge in the prophylaxis of corona infection and current skills validating it for the development of precise and powerful therapeutic approaches will more efficiently resolve different clinical aspects of COVID-19. The review focuses on both traditional and emergent methods to prevent and treat COVID-19 with various Indian medicinal plants along with their phytochemicals.Copyright © 2023 Authors. All rights reserved.

7.
Indian Journal of Biochemistry & Biophysics ; 59(6):653-666, 2022.
Article in English | CAB Abstracts | ID: covidwho-2250046

ABSTRACT

This study aims to analyze the AntiCovid effect of Phytocompounds extracted from Native Indian Plant species by computational methods such as Molecular Docking. Through this study keeping the Indian Heritage alive we characterized the ability of these phytochemicals as inhibiting agents of the Main Protease enzyme of this Virus. The lack of any effective treatment and the reoccurrence of cases despite Vaccination necessitates the quick provision of anti-SARS-CoV-2 drugs. Natural substances are getting a lot of attention for SARS-CoV-2 therapy as they have proven antimicrobial activities and are a key source for numerous antiviral drugs. Despite the fact that this virus has several identified target receptors, Main Protease (Mpro) is crucial for viral replication. In this study, 26 phytochemicals from 10 native Indian plant species were studied. Our docking studies demonstrated that compounds Quercetin, Withaferin A, Sominone, and Nimbin were likely to be more favorable than the natural inhibitor N3, with binding energies of-8.42, -9.21, -9.95, and -8.88 kcal/mol, respectively. These four candidate natural compounds were further examined for their bioavailability scores through ADMET analysis to prove the safety of these compounds as well as their drug likeliness. Through the results it was indicated that these natural phytochemicals have a significant potential of inhibiting the SARS-CoV-2 Mpro enzyme and might be utilized to treat SARS-CoV-2 and manage public health, subject to in vitro validation in the future.

8.
Current Traditional Medicine ; 9(4):1-8, 2023.
Article in English | EMBASE | ID: covidwho-2281647

ABSTRACT

With the global death toll nearing 3.3 million, India being amongst the top 4 countries, the condition is more than fearsome. World Health Organization (WHO) recommends one doctor per 1000 population ratio, but India lags it by one doctor to 1456 people, which sets a lot of pressure on the healthcare system. Traditional remedies are becoming increasingly popular in India as a re-sult of the lack of a proper medical system. Due to the rich diversity of medicinal herbs and drugs, India has been managing health issues with its 5000 years old medication system. Amidst all this, the traditional medicine system has given relief to plenty of diseases and remains the primary de-fence system against COVID-19. Therefore, COVID-19 is also managed by its different medicinal systems, which are collectively known as the AYUSH regime. It had been a recognized system to tackle diseases in the past. In this mini-review, we performed a deep study of the Indian traditional medicine system in managing the COVID-19 situation.Copyright © 2023 Bentham Science Publishers.

9.
Current Traditional Medicine ; 9(3) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2264998

ABSTRACT

Background: Infectious diseases have posed a major threat to human survival for centu-ries and can devastate entire populations. Recently, the global outbreak of COVID-19 has increased exponentially, affecting more than 200 countries and millions of lives since the fall of 2019, largely due to the ineffectiveness of existing antiviral therapies. WHO announced it a public health emer-gency of international concern. A significant waiting period in antiviral therapy hindered by the rapid evolution of severe acute respiratory syndrome-coronavirus-2 aggravated the situation ensuing imposition of strict laws (e.g., communal dissociation, international travel restrictions, and mainte-nance of hygiene) that would help in inhibiting further outspread of COVID-19. Ayurveda system of medicine offers a holistic approach to the COVID-19 pandemic. Objective(s): This review aims to highlight the potential of medicinal herbs and Ayurvedic drugs as the remedial approach for viral diseases, such as COVID-19. Method(s): We reviewed the literature from journal publication websites and electronic databases, such as Bentham, Science Direct, Pub Med, Scopus, USFDA, etc. Result(s): The drugs used in the traditional system of medicine have the potential to prevent and cure the infected patient. Ayurvedic therapies are known for regulating immunity and rejuvenation properties that behold much promise in the management of COVID-19 disease. Government of India, Ministry of AYUSH recommends some precautionary fitness measures and an increase in immunity with special reference to respiratory health. Conclusion(s): While there is no medication for COVID-19 as of now, taking preventive measures and boosting body immunity is highly recommended. A number of medicinal plants that play an im-portant role in revitalizing the immune system are easily accessible in home remedies.Copyright © 2023 Bentham Science Publishers.

10.
Front Immunol ; 14: 1138215, 2023.
Article in English | MEDLINE | ID: covidwho-2278429

ABSTRACT

Cytokine release syndrome (CRS) due to severe acute respiratory coronavirus-2 (SARS-CoV-2) infection leads to life-threatening pneumonia which has been associated with coronavirus disease (COVID-19) pathologies. Centuries-old Asian traditional medicines such as Withania somnifera (L.) Dunal (WS) and Tinospora cordifolia (Willd.) Miers (TC) possess potent immunomodulatory effects and were used by the AYUSH ministry, in India during the COVID-19 pandemic. In the present study, we investigated WS and TC's anti-viral and immunomodulatory efficacy at the human equivalent doses using suitable in vitro and in vivo models. While both WS and TC showed immuno-modulatory potential, WS showed robust protection against loss in body weight, viral load, and pulmonary pathology in the hamster model of SARS-CoV2. In vitro pretreatment of mice and human neutrophils with WS and TC had no adverse effect on PMA, calcium ionophore, and TRLM-induced ROS generation, phagocytosis, bactericidal activity, and NETs formation. Interestingly, WS significantly suppressed the pro-inflammatory cytokines-induced Th1, Th2, and Th17 differentiation. We also used hACE2 transgenic mice to further investigate the efficacy of WS against acute SARS-CoV2 infection. Prophylactic treatment of WS in the hACE2 mice model showed significant protection against body weight loss, inflammation, and the lung viral load. The results obtained indicate that WS promoted the immunosuppressive environment in the hamster and hACE2 transgenic mice models and limited the worsening of the disease by reducing inflammation, suggesting that WS might be useful against other acute viral infections. The present study thus provides pre-clinical efficacy data to demonstrate a robust protective effect of WS against COVID-19 through its broader immunomodulatory activity.


Subject(s)
COVID-19 , Tinospora , Withania , Animals , Mice , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Neutrophils , Pandemics , RNA, Viral , SARS-CoV-2 , Cell Differentiation , Inflammation/drug therapy , Models, Theoretical , Mice, Transgenic
11.
J Clin Exp Hepatol ; 13(2): 360-371, 2023.
Article in English | MEDLINE | ID: covidwho-2273514

ABSTRACT

Background: Tinospora cordifolia (TC) is being increasingly consumed in India for its health and suggested immune-enhancing benefits in preventing and countering COVID-19. We previously published our experience of hepatotoxicity with self-medication of TC in six individuals. Since herb-induced liver injury (HILI) has been described with Tinospora crispa (TCR) consumption, it was contested that our patients may have mistakenly self-medicated with TCR which is similar in appearance to TC. Methods: We collected the four plant samples and two commercial preparations that were consumed by our patients for further analysis. The six samples underwent high performance thin layer chromatography phytochemical analysis and DNA barcoding studies for the confirmation of the genus and species. The four plant part samples which included stems and leaves were also analysed by a botanist for the characteristic morphological and microscopic features. Results: Based on morphological, microscopic, phytochemical and DNA studies, the four plant part samples were identified as TC. The two commercial preparations could not be analysed on phytochemical analysis or DNA barcoding studies due to other ingredients that most likely interfered with the analysis. The herb consumed by our study subjects was confirmed to be Tinospora cordifolia. Conclusion: We have highlighted the key morphological and phytochemical differences between these two species. We propose an algorithmic approach to accurately identify the implicated herb in cases of HILI. Future studies on causality need to focus on the serological/histopathological identification of active herb/metabolites in human tissues.

12.
J Ayurveda Integr Med ; : 100658, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2275522

ABSTRACT

Ayurveda is a centuries old traditional medicine practiced in India even today. There are certain safe medicinal plants with well-established medicinal properties both in clinical practice as well as in modern scientific publications. Guduchi or Tinospora cordifolia (Willd.) Miers (Menispermaceae), is one such medicinal plant that has well known anti-inflammatory, immune-modulatory and other safe therapeutic applications including hepato-protection, because of which it was recommended by the Ministry of AYUSH, Government of India to be used in COVID-19 care. Therefore, Aabha Nagral's article "Herbal Immune Booster-Induced Liver Injury in the COVID-19 Pandemic-a Case Series," published in 2021, was unanticipated. The article recounted histologically documented clinical cases of six patients who developed drug-induced autoimmune-like hepatitis after reported consumption of Guduchi or Guduchi containing formulations during the COVID-19 pandemic. Since the Ayurveda practitioners vouch by the safety of T. cordifolia (TC), it was felt that the story needed to be further scrutinized. This article reviews the botanical entities, the substitutes and adulterants of species used as Guduchi, their pharmacological and toxicological properties. While the authentic botanical entity of Guduchi is TC, Tinospora sinensis and Tinospora crispa are also commonly traded in the Indian subcontinent as Guduchi or Giloy. Among these species, T. crispa is known to induce heapto-toxicity. In Nagral's article, there were variations in the reported six cases in terms of patient history and TC/TC product consumption. More importantly, the botanical authenticity of the consumed products was not investigated. A review of published literature indicates that it is unlikely that the authentic TC could have induced autoimmune-like hepatitis of the patients. It is probable that a wrong species was self-administered by the patients. It is worth following up with the cases (patients), to investigate details of the products, so that other consumers do not suffer. Nagral's article however does highlight the serious issue of adulteration in herbal markets and the need for establishing a robust pharmacovigilant system in India.

13.
Chin J Integr Med ; 29(6): 549-555, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2248370

ABSTRACT

Tinospora cordifolia (Guduchi or Gurjo), a herbaceous vine or climbing deciduous shrub, is consider as an important medicine in the Ayurvedic system of medication, which is available in India, China, Myanmar, Bangladesh and Srilanka. Menispermaceae is the family of this compound. T. cordifolia have a variety of properties to treat various ailments such as fevers, jaundice, diabetes, dysentery, urinary infections, and skin diseases. This compound has been subjected to many chemicals, pharmacological, pre-clinical, or clinical investigations and some new therapeutic potential effects have been indicated. This review aims to summarize the critical information concerning in areas of chemical constituents, chemical structure, and pharmacokinetic activities such as anti-diabetic, anticancer, immune-modulatory, antivirus (especially in silico study about COVID-19), antioxidant, antimicrobial, hepatoprotective and its effect on cardiovascular and neurological disorders as well as rheumatoid arthritis. This traditional herb needs more experimental study on the clinical, pre-clinical study, and clinical efficacy of these compounds for the prevention and treatment of COVID-19 and needs large-scale clinical studies to prove the clinical efficacy of this compound, especially in stress-related diseases and other neuronal disorders.


Subject(s)
COVID-19 , Tinospora , Humans , Tinospora/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry
14.
International Journal of Pharmaceutical Sciences and Research ; 13(5):1818-1832, 2022.
Article in English | EMBASE | ID: covidwho-2235585

ABSTRACT

Guduchi (Tinospora cordifolia) is an essential drug of the Ayurvedic medicine system used in different Ayurvedic formulations to treat a variety of ailments. Guduchi is a member of the Menispermaceae family and is widely produced in tropical and sub-tropical countries such as India, Sri Lanka, China, Myanmar, Philippines, South Africa, Thailand, Bangladesh, and several south-east Asian continents such as Indonesia, Malaysia. All parts of Guduchi have nutritional value and medicinal importance, including the roots, stem, bark, and leaves. A different class of phytochemicals like alkaloids, glycosides, aliphatic compounds, diterpenoids, sesquiterpenoids, phenolic compounds, steroid and polysaccharides, etc., are found in Guduchi. Tinosporaside, tinosporine, magnosporine, berberine, choline, Jatrorrhizine, palmatine, beberine, giloin, giloinsterol, and other beneficial biomarkers are present in this herb. Guduchi is used to treat cold, fever, headache, jaundice, digestive disorder, among other things, and it shows several proven pharmacological activities such as anti-oxidant, anti-inflammatory, antidiabetic, immunomodulatory activity, anti-toxic, hepatoprotective, anticancer, cardioprotective activity, radioprotective, antimicrobial, anti-stress, anti-HIV and many more. This review article majorly highlights the phytochemical present in Guduchi, analytical works and pharmacological activities of Guduchi. Copyright © 2022 are reserved by International Journal of Pharmaceutical Sciences and Research.

15.
International Journal of Applied Pharmaceutics ; 15(1):61.0, 2023.
Article in English | EMBASE | ID: covidwho-2230197

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-caused coronavirus disease 2019 (COVID-19) pandemic, which began in early December 2019, has spread quickly over the world and presented an unprecedented threat to human health. The disease is characterized by cytokine storm, resulting in endothelial inflammation/dysfunction, micro- and macro-vascular thrombosis, which may damage organs other than the lung. COVID-19 substantially impairs the cardiovascular system. According to the study published in the journal Nature Medicine, patients with COVID-19 were more likely to have a wide range of cardiovascular conditions. Thus, one of the most useful tools in the therapeutic management of post-covid cardiovascular illnesses will be cardio-protection and treatment. Despite improvements in CVD management and therapy, CVDs continue to claim more lives than other cancer types combined. As a result, there has been significant enforcement of CVD prevention in recent years. Since ancient times, people have used herbs to treat cardiovascular conditions. The journal of Clinical Phytoscience published an article in 2021 that used cluster analysis to choose 128 plants. These herbs effectively protected the heart. This study and subsequent analysis revealed that herbal remedies like Arjuna, Tribulus, and Tinospora have potent cardioprotective characteristics. The evidence for these herbs' cardiovascular protection is highlighted in the current review.

16.
3 Biotech ; 11(3): 136, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1130937

ABSTRACT

Therapeutic options for SARS-CoV-2 are limited merely to the symptoms or repurposed drugs and non-specific interventions to promote the human immune system. In the present study, chromatographic and in silico approaches were implemented to identify bioactive compounds which might play pivotal role as inhibitor for SARS-CoV-2 and human immunomodulator (TGF-ß and TNF-α). Tinospora cordifolia (Willd.) Miers was evaluated for phenolic composition and explored for bioactive compounds by high-performance thin layer chromatography (HPTLC). Furthermore, the bioactive compounds such as cordifolioside, berberine, and magnoflorine were appraised as human immunomodulatory and potent inhibitor against Main Protease (Mpro) of SARS-CoV-2 through multiple docking strategies. Cordifolioside formed six stable H-bonds with His41, Ser144, Cys145, His163, His164, and Glu166 of Mpro of SARS-CoV-2, which displayed a significant role in the viral replication/transcription during infection acting towards the common conserved binding cleft among all strains of coronavirus. Overall, the study emphasized that the proposed cordifolioside might use for future investigations, which hold as a promising scaffold for developing anti-COVID-19 drug and reduce human cytokine storm.

17.
Journal of Pharmaceutical Negative Results ; 13:3929-3940, 2022.
Article in English | EMBASE | ID: covidwho-2206739

ABSTRACT

Tinospora cordifolia commonly known as giloy is used in traditional Ayurvedic medicine and the Indian system of medicine (ISM) since times immemorial. The plant is designated as Rasayana in ayurveda and is very well known for building up the immune system and body's defence against definite infecting micro-organisms. There are 40 species but 4 species are found in India. It is a herbaceous perennial vine that belongs to the family Menispermaceae. It is widely used as a unique ingredient of various natural medicine and traditionally use for numerous ailments like fever, vomiting, diabetes, jaundice, anaemia, polyuria and skin diseases etc. It has antimicrobial activity, anticancer activity, anti-diabetic activity, anti-inflammatory, antioxidant, and immunomodulatory properties. Giloy is also used in the treatment of coronaviruses because giloy built a strong immunity in the human body against covid-19. A variety of active components derived from the plant like alkaloids, steroids, diterpenoid lactones, aliphatic, and glycosides have been isolated from the different parts of the plant, like root, stem, leaves and whole plant. The current study explores and establishes the biological and medicinal properties and phytochemistry of Tinospora cordifolia. Copyright © 2022 Wolters Kluwer Medknow Publications. All rights reserved.

18.
Molecules ; 27(24)2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2163532

ABSTRACT

Despite ongoing vaccination programs against COVID-19 around the world, cases of infection are still rising with new variants. This infers that an effective antiviral drug against COVID-19 is crucial along with vaccinations to decrease cases. A potential target of such antivirals could be the membrane components of the causative pathogen, SARS-CoV-2, for instance spike (S) protein. In our research, we have deployed in vitro screening of crude extracts of seven ethnomedicinal plants against the spike receptor-binding domain (S1-RBD) of SARS-CoV-2 using an enzyme-linked immunosorbent assay (ELISA). Following encouraging in vitro results for Tinospora cordifolia, in silico studies were conducted for the 14 reported antiviral secondary metabolites isolated from T. cordifolia-a species widely cultivated and used as an antiviral drug in the Himalayan country of Nepal-using Genetic Optimization for Ligand Docking (GOLD), Molecular Operating Environment (MOE), and BIOVIA Discovery Studio. The molecular docking and binding energy study revealed that cordifolioside-A had a higher binding affinity and was the most effective in binding to the competitive site of the spike protein. Molecular dynamics (MD) simulation studies using GROMACS 5.4.1 further assayed the interaction between the potent compound and binding sites of the spike protein. It revealed that cordifolioside-A demonstrated better binding affinity and stability, and resulted in a conformational change in S1-RBD, hence hindering the activities of the protein. In addition, ADMET analysis of the secondary metabolites from T. cordifolia revealed promising pharmacokinetic properties. Our study thus recommends that certain secondary metabolites of T. cordifolia are possible medicinal candidates against SARS-CoV-2.


Subject(s)
COVID-19 , Plants, Medicinal , Humans , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/metabolism , Molecular Docking Simulation , Plants, Medicinal/metabolism , Altitude , Nepal , Antiviral Agents/chemistry , Protein Binding , Molecular Dynamics Simulation
19.
Journal of Pharmaceutical Negative Results ; 13(4):875-882, 2022.
Article in English | EMBASE | ID: covidwho-2156307

ABSTRACT

Tinospora cordifolia is a wild herb found in the hills of Western Maharashtra, has been utilized in Ayurvedic medicine to treat hepatitis as a hepatoprotective agent. Furthermore, during the current COVID 19 pandemic, it has recently been ingested by the general public as an immune booster. The purpose of this study was to describe the hepatotoxic effects of Tinospora cordifolia and the clinical outcomes. The study was conducted in Western India's multispecialty tertiary care center. Twenty individuals with impaired liver function test (LFTs), a history of Tinospora cordifolia ingestion, and no additional etiologies were included. These patients were followed until their LFT levels stabilized or they died. We observed 20 patients who had taken Tinospora cordifolia and had clinical hepatitis as well as abnormal LFT. The Roussel Uclaf Causality Assessment Method (RUCAM) score for all of these individuals was larger than 6(6.7+/-0.3), indicating causation. The severity of the presentation and course ranged from mild to severe, with 95% (n=19/20) of patients recovering with supportive care, while one death is due to acute on chronic liver failure. The average time to recovery was 72.6 +/-9.6 days. With large doses, Tinospora cordifolia may induce hepatotoxicity most likely in genetically vulnerable elderly. It is important to raise awareness among community about the risks of the unchecked and indiscriminate use of herbal products and their toxicities. Copyright © 2022 Wolters Kluwer Medknow Publications. All rights reserved.

20.
Journal of Drug and Alcohol Research ; 10(236120(2), 2021.
Article in English | CAB Abstracts | ID: covidwho-2045354

ABSTRACT

COVID-19 is an infectious disease caused by a newly discovered CORONAVIRUS. It's a type of Severe Acute Respiratory Syndrome. The symptoms of SARS-nCOV-2 cause dry cough, fever, Tiredness, and difficulty of breathing (severe cases). We can cure the symptoms and defects of the whole body (vata, pitta, kapha) caused by the system and its qualitative therapists.

SELECTION OF CITATIONS
SEARCH DETAIL